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Abstract— Convolutional neural networks (CNNs) have been
widely used in hyperspectral image (HSI) classification due
to their ability to extract image features effectively. However,
under the condition of limited samples, the modeling ability of
CNNs for the relationships among samples is limited. At present,
research on the classification of HSIs with a small number
of samples remains an important challenge in the field of
HSI processing. Recently, graph convolutional networks (GCNs)
have been applied in HSI classification tasks. In this article, a
multihop graph rectifies attention and spectral overlap grouping
convolutional fusion network (MRSGFN) for HSI classification
is proposed. In the graph convolution branch, a multihop graph
rectify attention (MHRA) is designed to weight and correct the
features extracted by graph convolution. In the convolutional
branch, to solve the problem of dimensionality disaster caused
by high spectral dimension with a small number of samples,
a spectral intra group inter group feature extraction module
(SI2FEM) based on spectral overlap grouping is constructed.
In order to better fuse the features extracted from CNNs and
GCNs, a Gaussian weighted fusion module (GWFM) is elabo-
rately designed in this article. The features extracted by different
branches are assigned different weights by GWFM through
a 2-D Gaussian map and then fused. Numerous experiments
were conducted on three common datasets and showed that the
classification performance of the proposed MRSGFN is superior
to other advanced methods.

Index Terms— Convolutional neural networks (CNNs),
few samples, graph convolution, hyperspectral image (HSI)
classification.

I. INTRODUCTION

N THE past few decades, hyperspectral-imaging tech-
nology has experienced rapid development and has been
widely applied in various fields such as biomedical [1], [2],
precision agriculture [3], and vegetation exploration [1], [4].
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The use of hyperspectral images (HSIs) for land cover classi-
fication is a challenging topic in Earth science and remote
sensing. HSIs are characterized by high spectral resolution
and rich spatial information. By capturing the differences in
spectral features related to pixels, they can more effectively
classify land features.

With the development of deep learning technology, numer-
ous advanced deep learning networks have been applied in
the field of HSIs classification and have made significant
progress 5], [6], [71, [8], [9], [10], [111, [12], [13], [14], [15].
Convolutional neural networks (CNNs) are highly favored
by researchers in the field of remote sensing due to their
advantages of weight sharing and translation invariance [16],
[17], [18], [19], [20], [21]. Roy et al. [22] proposed an
attention-based adaptive spectral space kernel residual network
A2S2K ResNet for HSI classification. In A2S2K ResNet,
an attention-based adaptive spectral space kernel module was
designed, which can adaptively select 3-D convolution kernels.
Wei et al. [23] designed quaternion CNNs (QCNNs). QCNN
can extract quaternion features from data and represent the
structural information of HSIs through quaternion algebra.
The ability of CNNs to extract image features is limited by
the size of the convolutional receptive field. Based on this
issue, Shi et al. [24] proposed a CNN feedback expansion
convolution network (FECNet) based on dilated convolution.
An extended convolution block was designed to expand the
receptive field by utilizing the feature of dilated convolution.
FECNet can expand the receptive field without increasing
computational complexity. In order to solve the problem of
end-to-end feature learning and transfer learning with limited
labeled samples for HSI classification, Wang et al. [45] pro-
posed a unified multiscale learning framework (UML) based
on fully convolutional networks, which design a multiscale
spatial channel attention mechanism and a multiscale shuffle
block to address the problem of land-cover map distortion.
Deformable convolution has the advantage of a receptive
field that can better fit the target object. It can adjust the
receptive field of convolution by learning the features of
the target object. Zhu et al. [25] utilized the advantages of
deformable convolution and proposed deformable HSI classi-
fication networks (DHCNet) based on deformable convolution.
Transformers have a global receptive field and can effectively
capture long-range dependencies [26], [27]. Although tradi-
tional convolution has excellent feature extraction capabilities,
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it is not good at modeling long contextual information in
high-resolution remote sensing images (HRRSIs). To address
this issue, Tang et al. [43] proposed the W-shaped hierarchical
network (WNet) by combining CNN and transformer. The
idea of deformability was introduced by WNet into Siamese
CNN and transformer to understand key and irregular regions
in HRRSI. Ji et al. [44] integrated the respective inductive
bias from CNNs and global receptive field from transformers,
and proposed a spatial spectral feature extraction network with
patch attention module (PAM) (PASSNet). The PAM proposed
by PASSNet is integrated into CNN and transformer, and spa-
tial spectral features are extracted from multiple perspectives.
The spectral spatial feature tokenization transformer (SSFTT)
was proposed by Sun et al. [28]. In SSFTT, a Gaussian weight-
ing module is proposed that can transform shallow spatial
spectral features into tokenized semantic features. Spectral fea-
ture extraction of HSIs is reconsidered from the perspective of
spectral sequences. Hong et al. [29] proposed SpectralFormer
(SF). SF proposed a spectral grouping-embedding module that
can learn richer local spectral representations. Hong et al. [29]
proposed SF. SF proposed a spectral grouping-embedding
module that can learn richer local spectral representations.
Although the deep learning methods based on Euclidean
data for feature modeling have achieved significant results.
However, feature-modeling methods based on Euclidean data
are difficult to learn complex topological structures. Therefore,
researchers have gradually drawn attention to feature learning
methods based on graph data, such as graph CNNs [30], [31],
[32], graph attention networks [13], [33], [34].

The existing HSIs classification based on unsupervised
and semisupervised neural networks lacks lightweight design
and incurs high computational costs. To address this issue,
Zhu et al. [46] proposed a self-supervised contrastive effective
asymmetric dilated network (SC-EADNet) for HSI classifica-
tion. A plug and play asymmetric dilated convolution (EADC)
block was designed, which uses different dilation rates to cap-
ture spatial information of objects of different shapes and sizes.
To address the issues of prototype instability and domain shift
between training and testing datasets in prototype based few
shot learning methods, Liu et al. [47] integrated contrastive
learning and few shot learning into end-to-end networks and
proposed a refined prototypical contrastive learning network
for few-shot learning (RPCL-FSL) for small sample HSIs
classification. The existing multimodal classification methods
do not fully utilize the features of multiple models. In order
to solve this problem, Xu et al. [48] proposed a dual band
dynamic modulation network for hyperspectral (HS) and light
detection and ranging (LiDAR) data classification. A new
dynamic multimodal gradient optimization (DMGO) strategy
has been designed, which can adaptively control the gradient
modulation of each feature extraction branch.

In recent years, graph convolutional networks (GCNs) have
been widely used in HSIs classification tasks due to their
powerful feature learning capabilities. GCNs can construct
relationships between samples and effectively process graph
structured data. First, the superpixel-based method converts
image data into graph data, and then GCNs are used to
extract spectral spatial features from the graph data. Shahraki
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and Prasad [35] proposed a cascaded 1-DCNN and GCN
method for HSI classification. Qin et al. [36] extended the
original GCN to the second order, taking into account spectral
and spatial neighborhood information. To solve the problem
of adjacency matrix consuming a large amount of memory
resources in GCN. Liu et al. [37] proposed a fast dynamic
graph convolution and CNN parallel network (FDGC). A new
dynamic GCN module is proposed in FDGC. It can adaptively
capture topology information, and GCN is extended to large
graphs. Dong et al. [12] proposed CNNs and graph attention
weighted fusion networks (WFCG) by combining the advan-
tages of CNN and GCN. The features extracted by CNN and
GCN are fused through weighted fusion for final classification
to better combine the features extracted by CNN and GCN.
Zhou et al. [38] proposed attention multihop graph and mul-
tiscale convolutional fusion network (AMGCFN). AMGCFN
proposes a multihop graph to expand the narrow receptive
field of GCN, and forms a cascaded network by stacking
multihop graphs GCN, which can effectively extract structural
information.

Although GCN has been widely used in HSI classifica-
tion, its narrow receptive field affects its feature extraction
ability. Due to the hundreds of spectral bands of HSIs,
dimensional disasters are easily caused in small sample sit-
uations. To address the aforementioned issues, this article
proposes a multihop graph rectifies attention and spectral
overlap grouping convolutional fusion network (MRSGFN)
for HSI classification. First, in the GCN branch, a multihop
graph rectify attention module (MHRA) is proposed. By using
high-order skip plots to obtain a larger receptive field, the
information from the larger receptive field is used to weight
and correct the information from the smaller receptive field.
Then, in the CNN branch, in order to solve the problem
of dimensionality disaster caused by spectral dimensions in
small samples, this article designs an spectral intra group
inter group feature extraction module (SI2FEM) based on
spectral overlap grouping. First, HSIs are grouped into spectral
information by SI2FEM with a fixed step size and number
of spectral groups. Then, in order to fully extract spectral
information, SI2FEM extracts and compresses the intragroup
spectral information. Finally, intergroup spectral information
is extracted. In order to better fuse the features extracted by
CNN and GCN, this article proposes a Gaussian weighted
fusion module (GWFM). GWFM assigns different weights to
the features extracted from the convolutional branch and graph
convolutional branch through 2-D Gaussian mapping and then
fuse the features extracted from the two branches based on
the assigned weights. Finally, the fused features are sent to
feedback high-order gated convolution for feature extraction.

The main contributions of this article are as follows.

1) In this article, a MHRA is proposed for HSI classifi-
cation. Considering the characteristic of large receptive
field in high-order hop graph, some attention maps
are obtained by MHRA through high-order hop graph
and node feature mapping. Then, attention weighting
is applied to the features extracted from the first-order
hop graph. The receptive field of GCN is expanded by
MHRA in a high-order hop graph weighted form.
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Fig. 1. Overall structure block diagram of MRSGFN.

2) In order to solve the problem of dimensionality disaster
caused by high spectral dimension with few samples,
a SI2FEM based on spectral overlap grouping is pro-
posed. The spectra of HSIs are grouped by spectral
overlap to reduce spectral dimensionality.

3) In order to better fuse the features extracted by CNN and
GCN, a GWFM is carefully designed. Through a 2-D
Gaussian mapping, GWFM assigns different weights to
the features extracted by the convolution branch and
graph integration branch. Then, the features extracted
by different branches are fused and sent to feedback
recursive gated convolution.

II. METHODOLOGY

The input HSI is represented as X in RA*W*B  where
H x W represents the spatial size of the input data and B
represents the spectral band number of HSIs. The MRSGFN
method proposed in this article mainly consists of three parts,
namely the SI2FEM, MHRA, and GWFM. First, a method
based on superpixel segmentation is used to convert image
data into graph data, which are input into the GCN branch
and expanded by MHRA in the form of high-order hop graph

Pooling Pooling

Add  Concatenate

to enhance the receptive field of GCN. Next, the HSI data are
input into the CNN branch, and SI2FEM is utilized for spectral
feature extraction and dimensionality reduction. Finally, the
features extracted by the two branches are input into GWFM
for information weighted fusion. The overall structure diagram
of MRSGEFN is shown in Fig. 1.

A. S2FEM

For HSI classification with small samples, the problem
of dimensionality disaster more prominent due to the high
spectral dimensions in small samples. To solve this problem,
a SI2FEM is proposed in this article. The spectra of HSIs are
grouped with a fixed step size and number of grouping bands
through overlapping grouping. Then, in order to fully extract
spectral information, a feature extraction module within and
between spectral groups was designed. The structural diagram
of SI2FEM is shown in Fig. 2.

First, the input HSIs data are represented as X in RF*WxB,
HSIs data are spectral grouped, and the size of the grouped
data is represented as H x W X n x c, where n is the
number of spectral groups after spectral grouping, and c is the
number of spectra within a group. The calculation formula is

Authorized licensed use limited to: Harbin Engineering Univ Library. Downloaded on July 16,2024 at 04:34:34 UTC from |IEEE Xplore. Restrictions apply.



5520517

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Transpose @

Avg Max
Pooling Pooling

Conv

Conv  Conv BN ReLU
5x5

1x1 3x3

Fig. 2. Structural block diagram of SI2FEM.

as follows:

B
n= [] + 1. €))]

Cc

The specific implementation process of spectral overlap
grouping is listed in Algorithm 1.

Algorithm 1 The Implementation Process of Spectral Overlap
Grouping

Input: HSIs data X € R¥>W>x5 spectral grouping number n,
spectral grouping step size s
Output: HSIs data X, € R¥>*W>mx¢ after grouping
1 Calculate the spectral dimension to obtain Bnums
2 Initialization index = 0
3 While index +n < Bnums:
4 The spectra from positions index to index+n are grouped
5 Update index = index % s
6 Determine if there are still spectra that have not been
grouped. If available, repeat grouping the ungrouped spectra.
7 The grouped hyperspectral data is output

End

The data after spectral overlap grouping are input into
SI2FEM for spectral extraction. The input data size of SI2FEM
is represented as H x W x n x c. First, SI2FEM performs
intragroup spectral feature extraction on the input data; then,
the extracted features are dimensionally reduced and trans-
posed. The obtained feature size is H x W x 1 x n. The process
of extracting intragroup spectral information for SI2FEM can
be represented as

X1 = Wixixs x BN(X) +b 2
X, = [Max(X,) + Avg(x)] P, 3)

Subsequently, the extracted features are subjected to inter-
group spectral information extraction and dimensionality
reduction. Finally, the spectral information extracted within

Add Concatenate

and between groups after grouping is corrected by cascading
it with the ungrouped spectral information. The process of
extracting intergroup spectral information for SI2FEM can be
represented as

X3 =8(Wixix1 x (BN(8(W,,, s x Xa+b)))+b) (4

X4 = Max(X3) + Avg(X3) )]
Xout = Wixix1 X 8(Wixix1 x BN(Concat(Xy4, X)) + b) + b.
6)

The batch normalization, maximum pooling function, and
mean pooling function are represented as BN(-), Max(-), and
Avg(-), respectively. Wi, 1«5 and Wiy« represent the convo-
lution weights with kernel sizesof 1 x 1 x Sand 1 x 1 x 1,
respectively. b represents convolutional bias. Concat(-) repre-
sents a cascade function, and § represents a linear rectification
function.

B. Multihop Graph Rectify Attention

GCN can effectively extract local features of images by
utilizing their spatial relationships and topological structures.
Due to the fact that GCN is based on graph structure for feature
extraction, the receptive field of each node only includes its
neighboring nodes, which make the receptive field of GCN
relatively narrow. In order to expand the receptive field of
GCN and enable it to capture global contextual information,
a MHRA is proposed in this article. MHRA obtains a larger
receptive field through high-order skip maps, and then uses
attention correction to weight the extracted features under
the first-order skip map. The structural diagram of MHRA
is shown in Fig. 3.

First, a simple linear iterative clustering (SLIC) is used for
superpixel segmentation to generate superpixel map nodes.
After superpixel segmentation, the resulting undirected graph
structure is represented as G = (V, &), where V represents the
vertex set of |V| = N, and & represents the edge set of the
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Fig. 3. Structural block diagram of MHRA.

graph. Finally, £ and V are encoded into node matrix H and
adjacency matrix A, respectively, and input into GCN.

In order to obtain more receptive fields, a high-order hop
graph are constructed in this article as adjacency matrices for
mapping attention maps. Specifically, first, the segmentation
map is obtained through SLIC. Then, the Gaussian kernel
function is adopted to calculate the weights between each
superpixel node, resulting in a basic weight matrix W. Finally,
the adjacency matrix of the multihop graph structure is con-
structed using the depth first search algorithm (DFS). This
process can be represented as

W6 1) IS=SilF 5. in M(S;)
i, =
/ 0 otherwise

(7

Ar(n,ng) = l/k(W(n, n) + W, na) + - - + W1, ng))
)

where 91(S;) is the adjacent pixel of S;. The Euclidean dis-
tance between nodes i and j is represented as ||S; — S;||. The
middle node of the path is represented as n, ny, ny - - - ng_1, H.

In the proposed MHRA module, based on the construction
method of the adjacency matrix of the multihop graph struc-
ture, the first-order hop graph adjacency matrix A; and the
fifth-order hop graph adjacency matrix As were constructed
and used as inputs for the adjacency matrix of MHRA. First,
the node matrix H and the first-order hop graph adjacency
matrix A; are input into GCN to extract local features. The
obtained node feature matrix H; is also input into GCN,
and after nonlinear activation, the node feature matrix H, is
output. Then, the high-order hop graph adjacency matrices
As and H; are mapped through GCN to obtain the Query
vector and Key vector. Next, the two mapped vectors are cross
multiplied to obtain the attention weight matrix M,. Finally,
perform weighted rectify on the attention weight matrix M,
and the node feature matrix H,. The weighted corrected node
feature matrix is represented as Hyy. The calculation process
is represented as

H; = BN(GCN(H, Ay)) 9

5520517

.
I#:

H> = §(GCN(H;, A))) (10)
Query, Key = §(GCN(H;, As)) (11)
How = Hi x (Query ® Key). (12)

Among them, the graph convolution is represented as
GCN(-). H, H, and H, represent node matrices at different
stages. The first-order hop graph adjacency matrix and the
fifth-order hop graph adjacency matrix are represented as A,
and As, respectively.

C. Gaussian Weighted Fusion Module

The MRSGFN proposed in this article is a dual branch
fusion network. In [39], it is indicated that the discrimina-
tive regions correspond to the most sensitive features, while
the secondary features represent important but easily over-
looked regions. Sensitive features are beneficial for enhancing
decision-making ability, while secondary features are also
beneficial for better classification. In order to better combine
the advantages of CNN and GCN, based on our previous
work [26], this article proposes a GWFM. First, the features
extracted from the two branches are weighted by GWFM for
channel information. Then, the attention matrix is weighted
twice by GWFM through a 2-D Gaussian function mapping,
which can better suppress unimportant features and enhance
important and subimportant features. Next, the weighted fused
features are sent to the feedback recursive gated convolution
module for feature extraction again. Finally, the output features
are sent to the classifier for classification. The structural
diagram of GWFM is shown in Fig. 4.

In order to better fuse the features extracted by graph
convolution with those extracted by convolution, inspired by
Liu et al. [40], a mutual conversion between graph data
and superpixel data is conducted in the network. In the
preprocessing stage of HSI, the image data are processed using
superpixel segmentation method, and a transformation matrix
Q in R7"xZ between pixels and superpixels is constructed,
where Z represents the number of superpixels. The calculation
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Fig. 4. Structural block diagram of GWFM.
process is
1, X;inS;
’ J
Qi = o (13)
0, X;¢5S;
X = flatten(X). (14)

X in RAW*E ig the data obtained by flattening the two
spatial dimensions of the original HSI data. Q; ; represents the
relationship between the ith pixel and the jth superpixel S§;.
The conversion process between graph nodes and superpixels
can be represented as

15)
(16)

H = Encoder(X; Q) = QO flatten(X)
X = Decoder(H; Q) = reshape(QH).

Among them, Q represents the normalized Q of the column,
and H is a graph node composed of superpixels. reshape(-)
represents the spatial dimension of the restored flattened data.
Encode(-) represents the mapping from pixels to graph nodes,
and Decode(-) represents the mapping from graph nodes to
pixels. In GWFM, first, the input CNN features and GCN
features are, respectively, weighted with channel attention. The
process can be represented as

Xave = 8(Wix1 X (8(Wixy x Avg(Xin) + b)) +b)  (17)
XMax = 5(W1><1 X (5(W1><1 X MaX(Xin) + b)) + b) (18)
Xou = XAvg + XMax- (19)

Among them, W, represent 2-D convolutional weights of
size 1 x 1.

After channel attention weighting, the convolutional features
are transposed and cross-multiplied with the graph convo-
lutional features to obtain a spatial attention weight matrix.
In order to better suppress unimportant features and highlight
important and subimportant features. The spatial attention
weight matrix after cross multiplication is subjected to a

convolution, and the representational ability of the model
is improved. By using a feedback mechanism, the features
extracted from recursive-gated convolution are fed back to
the input features in an attention weighted manner, thereby
achieving rectification of the input features. The calculation
process can be expressed as

1 _ [922(*1-“1)2‘;9122(’62—”2)2)]
e 20763
RV, 27‘[9192

Gaussian(xy, xp) =

(20)

Xgout = Gaussian(xcol, Xrow) + Xin 2D

[Po. a1, 42, - qu1] = 9 (¥gou) (22)
Fg"Conv = fi(qr) © gk(pi)/a. (23)

Among them, x., and x;o, represent spatial column features
and spatial row features, respectively. ¥ (-) represents the
mapping function. py, g1, g2, - - - g,—1 is a feature mapped from
9 (). fi(-) represents depthwise separable convolution, gi(-)
represents point convolution. © represents dot product, «
represents scaling factor.

D. Implementation Process

Taking the Indian Pines dataset as an example, the imple-
mentation process of MRSGFN is described as follows. First,
the input HS data X e RP*WxB igs segmented by SLIC
algorithm to obtain the transformation matrix Q € R#W*N,
node matrix H € R¥*C, and adjacency matrix A € RV*V,
Then, the node matrix H and adjacency matrix A are input
into the graph convolution branch to extract graph features.
In the graph convolution branch, MHRA is utilized in an
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attention-weighted manner to expand the receptive field of
graph convolution. The inputs of MHRA are node matrix
H, adjacency matrix A, and K-order hop graph adjacency
matrix Az. MHRA first performs graph feature extraction on
input H and A to obtain node feature H;. Then, H; per-
forms graph convolution mapping with A; and A respectively,
obtaining three feature vectors of O, K, V. Then Q and K per-
form vector dot multiplication to obtain the attention matrix,
and finally the attention matrix is weighted and multiplied
with V.

In the convolutional branch, the input data are
X € RI*WxB  First, SI2FEM is utilized to group
spectral features, and the grouped data are represented
as X, € RHWxnxG_ Then, the grouped features are
sequentially subjected to intragroup and intergroup feature
extraction and dimensionality reduction. Finally, the features
extracted by the two branches are input into GWFM for
2-D Gaussian mapping weighting, and the data are sent to
feedback recursive gated convolution for forward propagation.
The implementation details of the MRSGFN method are
described in Algorithm 2.

Algorithm 2 Implementation details of the MRSGFN method

5520517

TABLE I

CATEGORY NAMES AND NUMBER OF DATA SAMPLE DIVISIONS FOR THE
INDIAN PINES DATASET

Category  Label color Land cover Training Total
1 . Alfalfa 1 46
2 Corn-notill 29 1428
3 [ Corn-mintill 17 830
4 Corn 5 237
5 Grass-pasture 10 483
6 ] Grass-trees 15 730
7 ] Grass-pasture-mowed 1 28
8 ] Hay-windrowed 10 478
9 [ Oats 1 20
10 Soybean-notill 20 972
11 Soybean-mintill 50 2455
12 Soybean-clean 12 593
13 || Wheat 5 205
14 Woods 26 1265
15 Bldg-Grass-Tree-Drivers 8 386
16 | ] Stone-Steel-Towers 2 93
Total / / 212 10249
TABLE 11

CATEGORY NAMES AND NUMBER OF DATA SAMPLE PARTITIONS FOR THE
PAVIA DATASET

Input: HSIs data X € R7”*W*B landmark label ¥ e R/"*",
PCA band number b = 3 training sample ratio q%.

Output: Predictive labels for the dataset.

1: Set the batch size to 64 and the learning rate Ir of
optimizer Adam to 5e-4. Training round T = 200, superpixel
segmentation parameter S = 100.

2: Divide the training sample set according to the proportion
of q%, and the testing sample set according to 1-q%.
3:fori=1toTdo

4: The input data is executed using the SLIC algorithm to
obtain the transformation matrix Q € RW*N  node matrix
H € RY*C and adjacency matrix A € RV*V,

5: The node matrix H and adjacency matrix A are inputted
into the MHRA of the graph convolution branch to obtain the
graph node feature matrix Hy, € RV*C.

6: X € R¥*WxB ig input into the convolutional branch and
SI2FEM is executed.

7: The features extracted from graph convolution and con-
volutional branches are input into GWFM for 2-D Gaussian
weighted fusion.

8: The convolutional integral branch feature and the con-
volutional integral branch feature are cascaded to obtain
Xclx in RHWX6C.

9: The linear layer outputs the predicted category of pixels.
end for

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this article, extensive experiments have been conducted
on three common datasets to evaluate the effectiveness of the
proposed MRSGFN method. The classification performance of
the proposed method is compared with that of other advanced
methods from multiple perspectives. The experimental results
validate the effectiveness of the proposed method. The dataset

Category Label color Land cover Training Total
1 . Asphalt 14 6631
2 Meadows 38 18649
3 [ Gravel 5 2099
4 Trees 7 3064
5 Painted metal sheets 3 1345
6 — Bare Soil 11 5029
7 . Bitumen 3 1330
8 ] Self-Blocking Bricks 8 3682
9 | Shadows 2 947

/

Total / 91 42776

used in the experiment includes the Indian Pines dataset, Pavia
dataset, and Salinas dataset.

A. Dataset Description

Indian Pines dataset: HSIs data are captured by AVIRIS
sensors. A total of 21,025 pixels and 224 spectral reflection
bands are included, and after filtering out the water absorption
band and low signal-to-noise ratio band, the HSIs data contains
200 spectral bands. The Indian Pines landscape includes
two-third agriculture and one-third forest or other vegetation.
The names and sample divisions of each category in the dataset
are shown in Table I.

Pavia dataset: Pavia data are captured by ROSIS-3 sensors,
in which nine ground cover species are included. The image
space size is 610 x 340 and contains 115 spectral bands in
the wavelength range from 0.43 to 0.89 pm, with 103 spectral
bands remaining after the absorbing bands and the low signal-
to-noise bands are removed. The names and sample divisions
of each category in the dataset are shown in Table II.

Salinas dataset: the AVIRS sensor captured HSIs data from
the Salis Valley in California. The image space size is 512 x
217 and contains 224 spectral bands, with 200 spectral bands
remaining after the noise bands have been removed. Salinas
has a spatial resolution of 3.7 m and contains 16 crop
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categories. The names and sample divisions of each category
in the dataset are shown in Table III.

B. Experimental Setup

All experiments in this article were done on a platform with
an Intel! Core? i9-9900K CPU, an NVIDIA GeForce RTX
3090Ti GPU, and 128 G of random access memory, using the
language framework Pytorch. In this article, three common
evaluation indicators are chosen to evaluate the classification
performance of the model, namely overall accuracy (OA),
average accuracy (AA), and Kappa coefficient. OA represents
the ratio of the number of correctly categorized samples to
the total number of samples. AA represents the average of the
classification accuracy for each category. Kappa coefficient
is the evaluation metric that has been used to measure the
robustness of the model.

To verify the effectiveness of the MRSGFN method
proposed in this article, multiple advanced networks based
on CNNs, transformers, and GCNs were selected. This
includes HybridSN [41], A2S2K-ResNet [24], FECNet [24],
SSFTT [28], CTMixer [42], CNN-enhanced GCN
(CEGCN) [40], FDGC [37], and AMGCFN [38]. HybridSN is
a CNN network that combines 2DCNN and 3DCNN. A2S2K-
ResNet improves the residual network through adaptive
spectral space convolution kernels and employs an effective
feature recalibration mechanism to improve -classification
performance. FECNet constructs dilated convolution blocks
through 3-D dilated convolution, and the receptive field of
the convolution is expanded without increasing computational
complexity. SSFTT and CTMixer are transformer-based
classification methods that have a global receptive field, and
low-frequency features of images can be better extracted
for image classification. CEGCN, FDGC, WFCG, and
AMGCFN are GCN-based methods. CEGCN fully utilizes
the advantages of CNN and GCN, extracting features from
small-scale and regular target area HSI data using CNN, and
extracting features from large-scale and irregularly shaped
HSI data using GCN. Unlike CEGCN, FDGC can adaptively
capture the topology information of a graph in a supervised
manner. AMGCFN designed a cross attention fusion module
to adaptively fuse the features of two subnetworks.

C. Model Analysis

1) Ablation Analysis: The method proposed in this article
mainly consists of three modules, namely GWFM, SI2FEM,
and MHRA. In order to better validate the effectiveness of each
module of the proposed MRSGFN method, the performance of
different module combinations is compared to demonstrate the
effectiveness of each module. Some ablation experiments were
conducted on three commonly used datasets. The experimental
results are shown in Table IV. In Table IV, “,/” indicates that
the module is adopted in the current module combination,
and “—” indicates that the module is not adopted in the
module combination. There are four module combinations in

'Registered trademark.
2Trademarked.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

TABLE III

CATEGORY NAMES AND NUMBER OF DATA SAMPLE PARTITIONS FOR THE
SALINAS DATASET

Category Label color Land cover Training Total
1 [ Brocoil-green-weeds_1 5 2009
2 Brocoil-green-weeds_2 8 3726
3 _ Fallow 4 1976
4 Fallow-rough-plow 3 1394
5 Fallow-smooth 6 2678
6 [ Stubble 8 3959
7 [ ] Celery 8 3579
8 | ] Grapes-untrained 23 11271
9 | ] Soil-vinyard-develop 13 6203
10 Corn-senesced-green-weeds 7 3278
11 Lettuce-romaine-4wk 3 1068
12 Lettuce-romaine-5wk 4 1927
13 | ] Lettuce-romaine-6wk 2 916
14 Lettuce-romaine-7wk 3 1070
15 Vinyard-untrained 15 7268
16 | ] Vinyard-vertical-trellis 4 1807
Total / / 116 54129

TABLE IV
IMPACT OF DIFFERENT MODULES ON OA VALUES OF THREE DATASETS
Case Component DataSets

GWFM SI2FEM MHRA Indian Pines  Pavia  Salinas

1 v - - 93.37 9594  95.03

2 R Y - 93.76 96.47  95.70

3 R - v 94.26 96.71  96.06

4 N v 94.98 97.17  96.73

MRSGEN. From Table IV, it can be seen that in Case 1, only
the GWFM module is adopted in the network, and the OAs on
three datasets are all the lowest. In Case 2, GWFM module
and SI2FEM module are adopted in the network. It can be
seen that the OAs obtained in Case 2 on three datasets are
all higher than that obtained in Case 1. Especially for the
Salinas dataset, the OA of Case 2 is nearly 0.7% higher than
that of Case 1. Case 3 includes two modules: GWFM and
MHRA. It can be seen that for all three datasets, the OAs
of Case 3 are higher than those of Case 1, and the increase
in accuracy at this time is greater than that of Case 2. This
indicates that the increase in receptive field has a significant
impact on classification results. Case 4 is the final state of
the network, which includes three modules: GWFM, SI2FEM,
and MHRA. At this point, the OAs on the three datasets
are the highest among all module combinations. Specifically,
compared to the classification accuracy of Case 1, Case 2, and
Case 3, Case 4 has the largest increase in OA on the Indian
Pines dataset.

To further demonstrate the effectiveness of GWFM, some
ablation experiments were conducted on different datasets.
The results of the ablation experiment are shown in Table V,
where A represents the Gaussian weighted attention module
in GWFM and B represents the feedback recursive gated
convolution module in GWEM. “,/” indicates that the module
is adopted, and “—" indicates that the module is not adopted.
First, from the comparison of Case 1 and Case 3 in Table V,
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TABLE V
IMPACT OF GWFM ON OA VALUES
. With GWFM DataSets
Case | Without
GWFM A B Indian Pines Pavia Salinas
1 v - - 19.19 45.38 40.66
2 - v - 89.46 94.79 95.23
3 - \ \ 94.98 97.17 96.73
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Fig. 5. Impact of learning rate on classification accuracy on different datasets.

it can be found that GWFM can fully fuse the features
extracted by the two subnetworks, thereby obtaining satis-
factory classification results. However, without using GWFM
to fuse the features extracted by the two subnetworks, the
classification results of the network are very poor. Specifically,
for the Indian Pines dataset, without using GWFM to fuse the
features extracted by two sub networks, the overall classifica-
tion accuracy of the network is only 19.19%. By comparing
the OAs of Case 2 and Case 3 on three different datasets,
it is obvious that GWFM with Gaussian weighted attention
module can significantly improve the classification accuracy
of all three datasets, which fully demonstrates the importance
of feedback recursive gated convolution in GWFM.

2) Parameter Sensitivity Analysis: During the training pro-
cess, different learning rates have a significant impact on
the classification performance of the model. In order to
select the optimal learning rate for the proposed MRSGFN
method, some experiments using different learning rates were
conducted on three datasets. The selected learning rate is
{le —4,5¢ — 4, 1e — 3, 5¢ — 3}, and the experimental results
are shown in Fig. 5. From Fig. 5, it can be seen that on the
three datasets, as the learning rate increases, OA shows a trend
of first increasing and then decreasing. When the change in
learning rate is small, the classification performance of the
network is less affected. For example, when the learning rate
changes from le—4 to Se—4, the classification performance of
the model is less affected. When the learning rate changes from
le —3 to S5e — 3, the classification performance of the model is
greatly affected. Specifically, for the Indian Pines dataset, the
classification performance of the model changes dramatically
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Fig. 6. Impact of different superpixel segmentation scales on classification
accuracy. Impact of different superpixel segmentation scales on (a) OA value
and (b) AA value.

when the learning rate changes from le — 3 to 5¢ — 3. From
Fig. 5, it can be observed that for all three datasets, the impact
of learning rate on network classification performance shows
a trend of first increasing and then decreasing. When the
learning rate is Se — 4, the classification performance of the
network is the best; therefore, 5e —4 is chosen as the learning
rate.

3) Superpixel Segmentation Scale: The conversion of HSIs
image data into graph-structured data requires superpixel
segmentation. However, different segmentation scales have
different impacts on classification accuracy. In order to select
the optimal superpixel segmentation scale, some experi-
ments with different segmentation scales were conducted on
three different datasets. The superpixel segmentation scale
is {100, 200, 300, 400, 500}, and the experimental results are
shown in Fig. 6.

From Fig. 6(a), it can be seen that the Salinas dataset
are not very sensitive to changes in superpixel segmentation
scale. This is because the Salinas dataset has large land
cover targets, and changes in superpixel scale do not have a
significant impact on Salinas classification results. In Fig. 6(b),
the AA reflects the average classification accuracy of each
subcategory. There are small ground cover targets in the
Pavia and Indian Pines datasets, and large-scale superpixel
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Fig. 7. Impact of different training sample ratios on OA. Impact of OA on
(a) Indian Pines dataset, (b) OA in the Pavia dataset, and (c) Salinas dataset.

segmentation will generate sparse superpixel blocks, which
will cover more small targets. Therefore, for the Pavia and
Indian Pines datasets, as the segmentation scale increases, the
average classification accuracy will show a decreasing trend,
which is shown in Fig. 6(b). Specifically, for the Indian Pines
dataset, the average classification accuracy has significantly
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decreased due to the dense distribution of land cover in the
dataset. Many different types of land cover are in the same
area, and large-scale superpixel segmentation can result in a
superpixel containing multiple different types of land cover.
From Fig. 6, it can be seen that the three different datasets
can achieve optimal results for both OA and AA when the
superpixel segmentation scale is 100; therefore, we choose
100 as the superpixel segmentation scale.

4) Different Training Sample Ratios: The cost of annotating
HSIs data is expensive, so the training samples for HSIs are
usually limited. In the above experiments, a large number of
experiments have demonstrated the excellent performance of
the proposed MRSGFN method in small samples. In this part,
the classification performance of MRSGFN and all comparison
methods has been validated on three datasets under different
training sample ratios. Among them, the sample ratio of the
Indian Pines dataset is selected as {2%, 4%, 6%, 8%, 10%},
and the sample ratio of the Pavia and Salinas datasets is
selected as {0.2%, 0.4%, 0.6%, 0.8%, 1.0%}. The impact of
different training sample ratios on OA is shown in Fig. 7. From
Fig. 7, it can be seen that as the proportion of training samples
increases, the OA values of most comparison methods show an
increasing trend. For the maximum training sample ratio, the
highest OA values are obtained. The method proposed in this
article always maintains the best classification performance
under all training sample ratios. On the contrary, as the
proportion of training samples decreases, the classification
performance of all methods decreases to a certain extent.
Specifically, in the Indian Pines dataset, the greatest decrease
in classification accuracy occurs when the training ratio is
reduced from 4% to 2%. Similarly, in the Pavia and Sali-
nas datasets, the greatest decrease in classification accuracy
occurs when the training ratio is reduced from 0.4% to 0.2%.
When the proportion of training samples is small, the method
proposed in this article still has excellent classification per-
formance. These indicate that the robustness of the proposed
MRSGFN method is very satisfactory under different training
sample ratios.

5) Different Order of Hop Graph: To better illustrate the
impact of hop graph order on model performance, some
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Fig. 9. Classification maps obtained by all methods on the Indian Pines dataset. (a) Pseudo color map, (b) real feature map, (c) HybridSN, (d) A2S2K-ResNet,
(e) FECNet, (f) and (g) SSFTT and CTMixer, respectively, (h)—(j) CEGCN, FDGC, and AMGCFN, and (k) MRSGFN.
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Classification maps obtained by all methods on the Pavia dataset. (a) Pseudo color map, (b) real feature map, (c) HybridSN, (d) A2S2K-ResNet,

(e) FECNet, (f) and (g) SSFTT and CTMixer, respectively, (h)—(j) CEGCN, FDGC, and AMGCFN, and (k) MRSGFN.

experiments were conducted on three different datasets, that
is, Indian Pines, Pavia, and Salinas, using different order of
hop graph. The order range of hop graph is {1, 3,5, 7}, and
the experimental results are shown in Fig. 8. From Fig. §,
it can be seen that for the Indian Pines data, as the hop
order increases, the OA value of the model shows a trend of
first increasing and then decreasing, and reaches its maximum
value when the hop order is 5. Similarly, for the Salinas and
Pavia datasets, OA also showed a trend of first increasing

and then decreasing. This is because as the order of the
hop graph increases, the receptive field of graph convolution
also gradually increases. However, when the receptive field is
large, not only it requires more data preprocessing time but
the large receptive field also prevents the model from paying
attention to local information, resulting in the loss of important
local information and a decrease in the model’s classification
performance. In summary, the order of hop graphs selected in
this article is 5.
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Classification maps obtained by all methods on the Salinas dataset. (a) Pseudo color map, (b) real feature map, (c) HybridSN, (d) A2S2K-ResNet,

(e) FECNet, (f) and (g) SSFTT and CTMixer, respectively, (h)—(j) CEGCN, FDGC, and AMGCFN, and (k) MRSGFN.

D. Analysis of Results

1) Quantitative Analysis: Tables VI-VIII show the OA,
AA, Kappa, and classification accuracy for each category of all
methods in this article on the Indian Pines, Pavia, and Salinas
datasets. The best classification results have been bolded. From
Tables VI-VIII, it can be seen that both transformer-based
and CNN-based methods achieve poor classification accuracy
in the case of a small number of samples, as these meth-
ods are modeled under a large number of training samples.
In GCN-based methods, AMGCEFEN benefits from its cascaded
multihop graph structure, which enables it to obtain richer
graph features. Therefore, the classification performance of
AMGCEFN exceeds that of other comparison methods, but it
still performs worse than the classification performance of the
proposed MRSGFN method. From Tables VI-VIII, it can be
seen that the OA, AA, and Kappa values of the MRSGFN
method proposed in this article are optimal on all datasets.
For the Indian Pines dataset, compared to other comparison
methods, the proposed MRSGFN method achieved the best
classification results for nine land cover categories. Specifi-
cally, the classification accuracy of category 9 “Oats” reached
100%. For the Pavia dataset, compared to other comparison
methods, the proposed MRSGFN method achieved the highest

classification accuracy for four land cover categories. From
the data in Table VIII, it can be observed that compared to
other comparison methods, the proposed MRSGFN method
achieved the best classification results for a total of eight land
cover categories. Specifically, the classification results for the
second and ninth categories in the Salinas dataset reached
100%. Even compared to the classification results of category
1 and category 7 in Salinas data, the proposed MRSGFN
method has only 0.08% and 0.04% lower OA than the optimal
classification results.

2) Visual Assessment: In order to provide a more intuitive
analysis of the classification performance of the proposed
method on different datasets, visual analysis was conducted
on the classification results of all methods. Figs. 9-11 show
the visualize classification results of all methods on the
Indian Pines, Pavia, and Salinas datasets, respectively. From
Figs. 9-11, it can be seen that compared with other methods,
the proposed MRSGFN method can provide classification
results that are closer to the real image. The comparison
method based on CNNs and the comparison method based on
transformer exhibit a significant amount of noise on all three
datasets, as these methods are based on a large number of
training samples for classification. Specifically, for example,
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Fig. 12. Comparison of t-SNE visualization results on the Indian Pines dataset. (a)—(f) Visualization results of t-SNE for FECNet, CTMixer, CEGCN, FDGC,

AMGCEFN, and MRSGFN, respectively.

TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE INDIAN PINES DATASET
Method CNN Transformer GCN
HybridSN A2S2K-Res  FECNet | SSFTT CTMixer CEGCN FDGC AMGCFN Proposed

OA (%) 75.09 89.65 86.48 87.59 92.54 89.46 88.87 92.13 94.83
AA (%) 71.67 87.83 81.50 85.50 89.52 74.12 81.61 90.57 94.08
Kappa (%) 71.51 88.13 84.56 85.79 91.49 87.88 85.03 91.04 94.10
1 65.83 85.22 65.09 85.98 89.26 7.27 75.69 71.63 87.44
2 67.50 87.29 85.07 83.31 89.85 87.26 73.61 87.53 93.86
3 64.00 88.55 81.28 82.08 91.72 75.56 74.43 92.04 92.60
4 66.50 93.45 80.00 90.00 92.08 49.16 75.40 92.19 95.91
5 87.27 97.74 95.47 93.51 97.25 87.82 79.75 85.35 89.57
6 85.86 96.97 92.62 95.77 95.18 99.26 86.41 94.51 97.78
7 46.44 75.73 62.30 59.29 68.35 46.54 52.60 88.24 90.66
8 92.24 99.59 99.04 99.31 99.37 98.60 89.71 99.70 99.80
9 37.86 49.49 41.35 61.68 70.22 17.22 42.02 97.37 100.00
10 68.17 88.55 81.10 84.12 88.70 89.01 75.43 88.06 89.31
11 77.40 84.71 86.36 85.63 93.55 96.31 81.97 96.22 96.78
12 65.33 89.65 80.10 86.21 90.69 77.57 66.51 81.75 90.45
13 91.40 94.31 92.14 97.18 95.94 98.97 78.96 94.99 98.51
14 86.52 95.16 94.64 94.45 96.55 99.02 86.47 95.78 98.26
15 73.54 91.19 85.74 87.51 89.70 75.16 70.66 93.61 94.57
16 70.84 87.76 81.71 81.98 83.93 79.10 65.56 90.20 89.71

the HybridSN method is a hybrid classification network based
on 2DCNN and 3DCNN, which requires a large number of
samples for training to extract discriminative features from
images. However, in the case of small samples, the feature
extraction ability of CNN is limited, and satisfactory features
cannot be extracted for classification. Under a small number
of training samples, the classification results based on graph

convolution methods are more satisfactory than those based
on CNN and transformer methods. Specifically, for the Indian
Pines and Pavia datasets, the classification maps obtained by
GCN-based methods have less noise. This is because Indian
Pines and Pavia have more land cover for small targets in
their data. Graph convolution can fully consider the spatial
relationship between objects, and better extract local features
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TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE PAVIA DATASET
Method CNN Transformer GCN
HybridSN  A2S2K-Res  FECNet SSFTT CTMixer CEGCN FDGC AMGCFN Proposed
OA (%) 83.28 80.00 92.03 88.74 93.04 95.75 87.10 94.97 96.73
AA (%) 79.19 81.61 89.23 87.02 90.25 91.11 80.49 90.66 94.00
Kappa (%) 77.63 72.54 89.44 84.96 90.76 94.36 82.83 93.33 95.66
1 79.92 70.78 93.09 87.86 92.81 97.97 70.48 92.20 96.69
2 92.12 84.76 97.54 93.54 97.88 98.62 87.23 98.79 98.90
3 62.72 73.83 69.07 72.20 74.75 85.04 64.24 85.05 84.45
4 81.22 93.56 93.70 94.64 96.53 89.37 69.19 86.91 90.90
5 94.40 98.06 98.91 96.92 98.23 99.96 83.86 98.89 99.87
6 86.65 84.53 94.95 88.43 96.01 98.13 84.98 98.46 98.83
7 76.35 85.04 86.88 89.68 86.66 85.56 77.59 93.86 95.89
8 57.97 58.02 73.94 70.80 78.18 93.60 62.77 94.21 97.52
9 81.39 85.88 97.01 89.05 91.28 71.75 51.60 67.62 82.92
TABLE VIII
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE SALINAS DATASET
CNN Transformer GCN
Method HybridSN  A2S2K-Res FECNet SSFTT CTMixer | CEGCN  FDGC AMGCFN Proposed
OA (%) 90.14 91.72 93.46 94.29 94.44 96.43 93.83 95.87 97.17
AA (%) 89.99 94.94 95.98 95.98 96.54 97.08 93.24 96.08 97.75
Kappa (%) 89.03 90.79 92.71 93.64 93.83 96.02 93.14 95.40 96.84
1 92.25 99.34 99.33 99.67 96.75 99.58 87.92 99.53 99.59
2 97.55 99.76 99.77 99.57 99.64 100.00 89.59 99.41 100.00
3 93.85 96.45 96.13 99.58 98.56 96.00 83.44 99.27 94.22
4 83.97 95.29 92.89 96.42 92.21 98.19 80.16 95.88 98.24
5 85.67 96.34 97.65 96.27 99.10 97.82 82.78 93.78 95.03
6 94.86 99.72 99.63 99.07 99.00 99.82 88.06 99.24 99.92
7 97.01 99.64 99.53 99.43 99.69 99.82 88.90 99.37 99.78
8 88.66 85.41 85.36 90.00 93.92 93.91 86.73 94.23 95.85
9 95.15 98.00 99.33 97.94 98.86 100.00 89.35 100.00 100.00
10 90.66 97.99 98.08 97.18 95.74 91.84 86.16 93.49 94.69
11 88.58 92.70 94.55 93.08 95.38 97.01 84.85 91.58 99.51
12 92.07 96.97 99.52 98.57 99.85 99.89 81.05 98.18 99.96
13 76.07 92.68 99.23 89.40 98.94 93.06 70.16 87.20 98.17
14 87.35 93.23 92.40 95.68 95.39 98.64 78.05 97.37 98.10
15 83.55 76.41 82.45 83.89 81.80 91.56 75.92 89.47 92.83
16 92.54 99.50 99.90 99.83 99.85 96.12 89.57 99.32 98.13

of small target objects for classification. Specifically, for all
datasets, the classification results of the AMGCFN method
are only lower than those of the proposed MRSGFN method.
This is because the cascaded structure of AMGCFN’s multihop
graph and multiscale convolution can extract richer spatial
information, and fully fuse the features of the two subnetworks
for classification through attention cross fusion. However, the
receptive field of GCN is relatively small, and AMGCEN is
prone to misclassification of edge pixels of adjacent features.
For example, on the Indian Pines dataset, AMGCFN misclas-
sifies “Grass Press” as “Soybean mintill.” On the Pavia dataset,
compared with the proposed MRSGFN method, the category
visualization results of AMGCEN are closer to that of the
real land map, for example: “Meadows” and “Bitumen.” In

the Salinas dataset, the proposed MRSGFN method achieved
a 100% classification result for the “Fallow Smooth” and
“Fallow” categories, which are consistent with the distribution
of “Fallow Smooth” and “Fallow” in real land classification
maps.

To further validate the classification performance of the pro-
posed MRSGFN method, the t-distributed stochastic neighbor
embedding (t-SNE) visualization method were conducted on
the Indian Pines, Pavia, and Salinas datasets with the compari-
son methods FECNet, CTMixer, CEGCN, FDGC, AMGCEFEN,
and the proposed MRSGFN method. From Figs. 1214, it can
be seen that the clustering effect of the proposed MRSGFN
method is the most outstanding. Compared to the CNN-based
method FECNet and the transformer-based method CTMixer,

Authorized licensed use limited to: Harbin Engineering Univ Library. Downloaded on July 16,2024 at 04:34:34 UTC from |IEEE Xplore. Restrictions apply.



SHI et al..: MHRA AND SPECTRAL OVERLAP GROUPING CONVOLUTIONAL FUSION NETWORK

Fig. 13.
AMGCEFN, and MRSGFN, respectively.

(d)

Fig. 14.
AMGCEFN, and MRSGEFN, respectively.

the proposed MRSGFN method has a smaller intraclass dis-
tance and better clustering performance on the Indian Pines
dataset. For the Pavia and Salinas datasets, compared with the
GCN-based methods, the proposed MRSGFN method has less
category confusion and larger interclass distance, which can
better classify different land cover categories. For the Salinas
dataset, compared with other methods, the MRSGFN method
proposed in this article has the best clustering performance,

5520517

Comparison of t-SNE visualization results on the Pavia dataset. (a)—(f) Visualization results of t-SNE for FECNet, CTMixer, CEGCN, FDGC,
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Comparison of t-SNE visualization results on the Salinas dataset. (a)—(f) Visualization results of t-SNE for FECNet, CTMixer, CEGCN, FDGC,

with small intraclass distances and larger distances between
different categories.

IV. CONCLUSION

In this article, in order to solve the classification problem of
HSIs under small samples, a MRSGFN for HSI classification
is proposed. MRSGFN consists of three core modules, that
is, MHRA, SI2FEM based on spectral overlap grouping, and
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GWEFM. In the graph integration branch, the receptive field
of GCN is expanded by MHRA through high-order hop
graph in an attention-weighted manner. In order to solve the
problem of dimensionality disaster more prominent due to
the high spectral dimensions in small samples, a SI2FEM
is proposed. SI2FEM reduces spectral dimensionality through
spectral grouping while preserving important spectral infor-
mation, and extracts intra- and intergroup spectral features
from the grouped data. Finally, in order to better integrate
the features extracted from the two branches, a GWFM is
proposed. GWFM assigns different weights to the features
extracted from the convolutional branch and graph convo-
lutional branch through 2-D Gaussian mapping, and then
fuses these features based on the assigned weights. Exper-
iments on three common datasets show that the MRSGFN
proposed in this article has excellent feature extraction and
fusion abilities compared to other advanced -classification
methods.

In future work, we will focus on graph convolution and
transformer, combining the advantages of graph convolution
in extracting local features with the global receptive field
of transformer, further enhancing the feature learning ability
of the designed network, and improving the classification
performance of HSI. Moreover, we will do some research on
the models of graph-transformer in semisupervised scenarios,
aiming to solve the problem of hyperspectral image classifi-
cations (HSIC) with fewer labeled samples and higher sample
labeling costs.
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